Asymptotic expansion of the Hankel transform with explicit remainder terms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

A Fast Analysis-Based Discrete Hankel Transform Using Asymptotic Expansions

A fast and numerically stable algorithm is described for computing the discrete Hankel transform of order 0 as well as evaluating Schlömilch and Fourier–Bessel expansions in O(N(logN)2/ loglogN) operations. The algorithm is based on an asymptotic expansion for Bessel functions of large arguments, the fast Fourier transform, and the Neumann addition formula. All the algorithmic parameters are se...

متن کامل

Exactification of the Poincaré asymptotic expansion of the Hankel integral: spectacularly accurate asymptotic expansions and non-asymptotic scales.

We obtain an exactification of the Poincaré asymptotic expansion (PAE) of the Hankel integral, [Formula: see text] as [Formula: see text], using the distributional approach of McClure & Wong. We find that, for half-integer orders of the Bessel function, the exactified asymptotic series terminates, so that it gives an exact finite sum representation of the Hankel integral. For other orders, the ...

متن کامل

On a Sobolev Inequality with Remainder Terms

In this note we consider the following Sobolev inequality

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quarterly of Applied Mathematics

سال: 1982

ISSN: 0033-569X,1552-4485

DOI: 10.1090/qam/652045